1 2 3


1. ACIA, Arctic Climate Impact Assessment 2005: Chapter 14: Juday, G et al: Forests, Land

management and Agriculture.

2. Aitken, S.N. et al 2008: Adaption, migration or extirpation: climate change outcome for tree

populations. Evolutionary Applications, vol. 1:1, p. 95-111.

3. Amir, B.D. et al 2006: The effect of post-fi re stand age on the boreal forest energy balance. Agricultural

and Forest Meteorology, vol. 140:1-4, p. 41-50.

4. Balshi, M.S. et al (в печати): Vulnerability of carbon storage in North American boreal forests to

wildfires during the 21st century. Global Change Biology.

5. Bonan, G.B. 2008: Forests and climate change: Forcings, feedbacks and climate benefi ts of

forests. Science, vol. 320:5882, p. 1444-1449.

6. Bond-Lamberty, B. et al 2007: Fire as the dominant driver of central Canadian boreal forest

carbon balance. Nature, vol. 450:7166, p. 89.

7. Bryant, D. et al 1997: The last frontier forests. World Resources Institute.

8. Edwards, M.E. et al 2005: Structurally novel biomes: A response to past warming in Beringia.

Ecology, vol. 86: 7, p. 1696-1703.

9. Flannigan et al 2005: Future area burned in Canada. Climate Change, vol. 72:1-2, p.1-16

10. Flannigan, M. et al 2009: Impacts of climate change on fire activity and fire management in

the circumboreal forest. Global Change Biology, vol. 15: 3,p. 549-560.

11. Frieler, K. et al 2009: Hagh noon for +2oС. Factsheet from the AirClim Secretariat.

12. Gamache, I. & Payette, S. 2005: Latitudinal response of subarctic tree lines to recent climate

change in eastern Canada. Journal of Biogeography, vol. 32: 5, p. 849-862.

13. Girardin, M.P. 2008: Response of tree growth to a changing climate in boreal central Canada:

A comparison of empirical, proсess-based, and hybrid modelling approaches. Ecological modelling,

vol. 213:2, p. 209-228.

14. Goetz, S.J. et al 2007: Ecosystem responses to recent climate change and fi re disturbance

at northern high latitudes: observations and model results contrasting northern Eurasia and

North America. Env. Research letters, vol. 2:4, #045031.

15. Grigoriev, A 2009: Boreal forest and climate change – a Russian perspective. Опубликовано на сайте

16. Hari, P. & Kulmala, L. (ed) 2008: Boreal forest and climate change. Advances in global cnange

research 27. Springer.

17. IPCC 2007: Fourth assessment report, Climate Change: Synthesis report.

18. IPCC 2007: Fourth assessment report, WG1, chapter 11: Regional Climate Projections.

19. IPCC 2007: Fourth assessment report, Climate Change. Working group II report: Impact,

adaptation and vulnerability, chapter 1: Assessment of observed changes and responses in

natural and managed systems.

20. IPCC 2007: Fourth assessment report, Climate Change. Working group II report: Impact,

adaptation and vulnerability, chapter 4: Ecosystems, their properties, goods and services.

21. Kane, E.S. & Vogel, J.G. 2009: Patterns of Total Ecosystem Carbon Storage with Changes in

Soil Temperature in Boreal Black Spruce Forests. Ecosystems, Vol. 12: 2, p. 322-335.

22. Kang, S. et al 2006: Simulating effects of fi re disturbance and climate change on boreal forest

productivity and evapotranspiration. Science of the Total Environment, vol. 362: 1-3, p. 85-


23. Kasischke, E.S. & Turetsky, M.R. 2006: Recent changes in the fire regime across the North

American boreal region - Spatial and temporal patterns of burning across Canada and Alaska.

Geophysical Research Letters, vol. 33: 9, #L09703.

24. Kelman Wieder, R. et al 2009: Postfire carbon balance in boreal bogs of Alberta, Canada.

Global Change Biology, vol. 15:1, p. 63-81.

25. Kirilenko, A.P. & Sedjo, R.A. 2007: Climate change impacts on forestry. PNAS, vol. 104:50,

p. 19697-19702.

26. Kullman, L. & Oberg, L. 2009: Post-Little Ice Age tree line rise and climate warming in the

Swedish Scandes: a landscape ecological perspective. Journal of Ecology, vol. 97: 3, p. 415-


27. Kurz, W.A. et al 2008: Risk of natural disturbances makes future contribution of Canada’s

forests to the global carbon cycle highly uncertain. PNAS, vol. 105:5, p. 1551-1555.

28. Kurz, W.A. et al 2008: Could increased boreal forest ecosystem productivity off set carbon

losses from increased disturbances? Phil. Trans. R. Soс. B - biological sciences, vol.363, p.


29. Kurz, W.A. et al 2008: Mountain pine beetle and forest carbon feedback to climate change.

Nature vol. 452:7190, p. 987-990.

30. Lapenis, A. et al 2005: Acclimation of Russian forests to recent changes in climate. Global

Change Biology, vol 11:12, p. 2090-2102.

31. Lenton, T. M. et al 2008: Tipping elements in the Earth’s climate system. PNAS vol. 105:6,

p. 1786-1793.

32. Lindroth, A. et al 2008: Storms can cause Europe-wide reduction in forest carbon sink. Global

Change Biology, vol. 15:2, p. 346 - 355.

33. Lloyd, A.H. & Bunn, A.G. 2007: Responses of the circumpolar boreal forest to 20th century

climate variability. Environmental research letters, vol. 2:4, #045013.

34. Lloyd, A.H. 2005: Ecological histories from Alaskan tree lines provide insight into future change.

Ecology, vol. 86:7, p. 1687-1695.

35. Luyssaert, S. et al 2008: Old-growth forests as carbon sinks. Nature, vol. 455, p. 213-215.

36. Malevsky-Malevich, S.P. et al 2008: An assessment of potential change in wildfi re activity in

the Russian boreal forest zone induced by climate warming during the 21st century. Climate

Change, vol. 86:3-4, p. 463-474.

37. Myers-Smith, I.H. et al 2008: Wetland succession in a permafrost collapse: interactions between

fi re and thermokarst. Biogeosciences, vol. 5: 5, p. 1273-1286.

38. Olsson, P. et al 2005: Fertilization of boreal forest reduces both autotrophic and heterotrophic

soil respiration. Global Change Biology , vol. 11:10, p. 1745-1753.

39. Piao, S. et al 2008: Net carbon dioxide losses of northern ecosystems in response to autumn

warming. Nature, vol. 451: 7174, p. 49-53.

40. Prof. Ulf Molau, личное сообщение

41. Raupach, M. at al 2007: Global drivers of accelerating CO2 emissions. PNAS, vol 104:24, p.


42. Rummukainen, M. 2009: Ny klimatvetenskap 2006-2009. Kommissionen for

hallbar utveckling.

43. Schaphoff , S. et al 2006: Terrestrial biosphere carbon storage under alternative climate projections.

Climatic Change, vol. 74: 1-3, p. 97-122.

44. Schlyter, P/ et al 2006: Assessment of the impacts of climate change and weather extremes on

boreal forests in northern Europe, foсusing on Norway spruce. Climate Research, vol. 31:1,

p. 75-84.

45. Shuur, E.A.G. et al 2008: Vulnerability of Permafrost Carbon to Climate Change: Implications

for the Global Carbon Cycle. BioScience, vol. 58:8, p.701-714.

46. Soja, A.J. et al 2007: Climate-induced boreal change: Predictions versus current observations.

Global and Planetary Change, vol. 56, p. 274-296.

47. Spracklen, D. et al 2008: Boreal forests, aerosols and the impacts on clouds and climate. Philosophical

Transactions of the Royal Soсiety A - Mathematical Physical And Engineering Sciences,

vol. 366:1885, p. 4613-4626.

48. Stireman, J.O. et al 2005: Climatic unpredictability and parasitism of caterpillars: Implications

of global warming. PNAS, vol. 102:48, p. 17384-17387.

49. Taggart, R.E. & Cross, A.T. 2009: Global greenhouse to icehouse and back again: Th e origin

and future of the Boreal Forest biome. Global And Planetary Change, Vol. 65: 3-4, p. 115-


50. Tivy, J. 1993: Biogeography. A study of plants in the ecosphere. Longman Scientifi c & Technical,


51. Tunved, P. et al 2006: High natural aerosol loading over boreal forests. Science, vol. 312: 5771,

p. 261-263.

52. Turetsky, M.R. et al 2005: Spatial Patterning of Soil Carbon Storage Across

Boreal Land-scapes, p. 229-255.

53. Ueyama, M. et al 2009: Response of the carbon cycle in sub-arctic black spruce forests to climate

change: Reduction of a carbon sink related to the sensivity of heterotrophic respiration.

Agricultural and Forest Meterorology, vol. 149:3-4, p. 2090-2102.

54. Vajda, A. & Venalainen, A. 2005: Feedback proсesses between climate, surface and vegetation

at the nrthern climatological tree-line (Finnish Lapland). Boreal Environment Research, vol.

10:4, p. 299-314.

55. Volney, W.J.A. & Fleming, R.A. 2007: Spruce budworm (Choristoneura spp.) biotype reactions

to forest and climate characteristics. Global Change Biology, vol. 13: 8, p. 1630-1643.

56. Zang, Y. et al 2006: Temporal and spatial changes of permafrost in Canada since the end of

the Little Ice Age. Journ. of Geophysical Research - Atmospheres, vol. 111:D22, #D22103.

57. Barley, S. et al 2009: No rainforest, no monsoon: get ready for a warmer world. New Scientist

30 September 2009.

58. McCarty, M. 2009: Government launches map to highlight global warming threat. The Independent,

22 Осtober 2009.

1 Автор перевода Н. Шматков, WWF России. Переведено с сокращениями. С полной версией документа на англ. яз. можно ознакомиться по ссылке е

2 Биом – крупная экосистема Земли, такая как, например, степь. (Здесь и далее прим. автора)

3 Экотон – переходная зона между крупными растительными сообществами, такими, например, как лес и степь

4 Активный слой – верхний слой вечной мерзлоты, который оттаивает летом и замерзает зимой.

5 Гт – гигатонна, или 1 грамм (в пятнадцатой степени) грамм. Общий сток углерода в почвах оценивается в 1500 Гт, сток растущих растений равен 500 Гт. В атмосфере содержится 30 Гт углерода, в год эмиссия СО2 от сжигания ископаемого топлива и другой промышленной деятельности составляет 8 Гт. В год бореальные леса поглощают приблизительно 1 Гт углерода (17).

<< предыдущая страница